El martes 21 de enero el astrofísico inglés Steve Fossey impartía una clase práctica de observación astronómica a un grupo de estudiantes (Ben Cooke, Tom Wright, Matthew Wilde y Guy Pollack) del University College de Londres (UCL). Como suele ser típico en la capital inglesa el cielo se encontraba bastante encapotado, pero aún así pudieron apuntar el telescopio automático de 35 cm del Observatorio de la Universidad de Londres a la famosa galaxia M 82. Localizada a 12 millones de años luz de nosotros, sobre la constelación boreal de la Osa Mayor, la galaxia M 82 alberga un intenso brote de formación estelar.
Como consecuencia de esta frenética actividad, M 82 posee unos chorros de gas caliente que se escapan de la galaxia. Por lo tanto, no es de extrañar que los estudiantes de Fossey eligieran este objeto para su clase práctica de astronomía. Mientras centraba el campo, Fossey observó que la galaxia tenía una estrella brillante que nunca antes se había observado. Dicha estrella aparecía también con otro de los telescopios del observatorio. Como las nubes estaban cerrando el cielo, rápidamente tomaron unas pocas imágenes en varios filtros. El análisis no mostraba duda: acababan de descubrir una supernova en la galaxia M 82.

¿Qué es una supernova? Es una estrella que, por una causa u otra, ha explotado, liberando al medio interestelar de su galaxia el material que tenía en su interior y mucha energía. Al explotar la estrella su brillo aumenta enormemente, hasta el punto de poderse observar incluso en galaxias muy lejanas. Los astrofísicos clasifican generalmente las supernovas en dos tipos: las que provienen de la muerte de una estrella masiva (más de 8 ó 9 veces la masa del Sol) que, al final de su vida, explotan al colapsar su núcleo (supernova de tipo II) o la explosión de una estrella enana blanca, que al “acretar” materia de una estrella compañera, se desestabiliza, provocándose una explosión termonuclear (supernova de tipo Ia). Este segundo tipo de supernovas son más luminosas, observándose a distancias cosmológicas. En efecto, fueron las observaciones de supernovas de tipo Ia en galaxias muy lejanas las que permitieron descubrir la aceleración del Universo y la existencia de la misteriosa “energía oscura”, hallazgo que supuso el premio Nobel de Física de 2011.
En poco más de un día, astrónomos aficionados y profesionales apuntaron sus telescopios a la galaxia M 82 y confirmaron el descubrimiento realizado por Fossey y sus alumnos. Incluso se encontró que se había fotografiado una semana antes, cuando era aún débil, por varios astrónomos, que no se habían percatado de su existencia. Un grupo de astrofísicos liderados por Yi Cao (Caltech) consiguió el primer espectro de la supernova usando el telescopio ARC de 3.5m del Observatorio Apache Point (Nuevo México, EE.UU.). El análisis de este espectro reveló que la estrella progenitora era una enana blanca, por lo tanto la supernova SN 2014J (así designada oficialmente) es del tipo Ia. Los restos de la estrella muerta se expanden a alta velocidad, alcanzando los 20 000 km/s. Además, el brillo de la supernova no ha alcanzado su máximo brillo: cuando Fossey y sus estudiantes la descubrieron estaba aún a 2 semanas de ello. Aún así, ahora mismo brilla tanto que es fácilmente localizable con un telescopio de aficionado. ¡Puede que incluso se pueda ver con prismáticos cuando alcance su máximo brillo!

Así, no es de extrañar que la supernova SN 2014J y la galaxia M 82 se hayan convertido en la noticia astronómica de los últimos días. Desde el Telescopio William Herschel (WHT), perteneciente al Isaac Newton Group (ING) del Observatorio del Roque de los Muchachos (isla de La Palma, España) los astrofísico Manuel Moreno-Raya (CIEMAT, España) y Lluís Galbany (DAS/UC, Chile) han podido observar con detalle supernova y galaxia entre el jueves 23 y el domingo 26 de enero usando tanto imágenes como espectros. Como formo parte del equipo investigador (de hecho, habría estado observando con ellos si mi responsabilidades en el Telescopio Anglo-Australiano no me lo hubiesen impedido) me pasaron los datos para combinarlos y conseguir imágenes y espectros preliminares. La imagen siguiente señala la supernova dentro de la galaxia M 82, de la que se han sacado todos sus detalles: las bandas de polvo que atraviesan el disco (negro-amarillo), los intensos brotes de formación estelar (en azul) y sobre todo la estructura filamentosa del superviento galáctico (en rojo) de gas caliente e ionizado que se escapa de forma perpendicular al disco de la galaxia. La SN 2014J destaca claramente sobre la propia galaxia.

Además, se ha analizado el espectro de baja resolución obtenido de la supernova SN 2014J. Este espectro abarca prácticamente todo el espectro visible (entre 3500 y 9500 Angstroms) e identifica sin duda a la supernova como de tipo Ia. Destacan sobre todo las bandas de absorción de hierro (Fe II y Fe III), magnesio (Mg II) y silicio (Si II) entre 4000 y 5000 A. Estos rasgos son fusiones de muchas líneas de estos elementos metálicos, que se están produciendo por la violenta explosión de supernova. De hecho, se esperan que vayan cambiando al pasar los días, dado que la concentración y la abundancia química de cada especie va variando al convertirse unos elementos en otros y poderse observar más material proveniente del centro de la estrella muerta.
Aún así, es una sorpresa encontrarlos ya casi 10 días antes del máximo de brillo. El espectro también muestra absorciones de azufre (S II) a 5240 y 5450 A, una fuerte absorción de silicio (Si II) a 6150, y absorciones de calcio (Ca II), sodio (Na I) y oxígeno (O I). Aparecen también algunas bandas atribuidas a absorciones de nuestra atmósfera (marcadas como «Tel», de «Telúricas»). Pero la línea que más nos ha llamado la atención es la pequeña absorción de carbono (C II) a 6580 A. Esta línea está indicando que la enana blanca progenitora de la supernova estaba compuesta por carbono y oxígeno (como la mayoría de las enanas blancas) pero no es habitual observarla en los espectros de supernovas de tipo Ia. Esto indicaría que la superficie de la enana blanca no se ha quemado completamente durante la explosión. Las líneas se observan “desplazadas al azul”, como consecuencia de la enorme velocidad a la que el material se expande. Las medidas de las líneas más destacadas del espectro de ACAM han confirmado que la capa que lleva la emisión de C II y Si II se mueve a unos 15000 km/s.

Curiosamente, el proyecto que Manuel Moreno-Raya (CIEMAT, España) y su equipo de investigación, formado por Mercedes Mollá (CIEMAT, España), Ángel R. López-Sánchez (AAO / MQ, Australia), Lluís Galbany (DAS / UC, Chile), Aurelio Carnero (ON, Brasil), Inma Domínguez (UGR, España) y Pepe Vílchez (CSIC / IAA, España), estaba observado en el Telescopio William Herschel tiene precisamente como objetivo calcular propiedades físicas y químicas de galaxias que han albergado supernovas de tipo Ia. El fin es determinar mejor los parámetros que controlan el brillo de las supernovas Ia a la hora de aplicar estas medidas al cálculo de la distancia a galaxias muy lejanas. Esta investigación forma la tesis doctoral que Manuel Moreno-Raya está efectuando en la actualidad. Además de las observaciones de M 82, se consiguieron datos profundos espectroscópicos de una veintena de galaxias más, que aún están en proceso de análisis.
La SN2014J es la supernova de tipo Ia más cercana a nosotros desde la supernova que observó el astrónomo alemán Johannes Kepler en 1604. Ésta sí sucedió en nuestra Galaxia, a una distancia de 20 mil años luz, y se pudo ver incluso a simple vista. También cerca estuvo la SN 1972e, que explotó en 1972 en la galaxia NGC 5253, a 13 millones de años luz de nosotros. NGC 5253 es una galaxia en cierta forma similar a M 82, pues aunque enana alberga también un intenso brote de formación estelar. Precisamente, la supernova SN 1972e quedó como prototipo para el desarrollo teórico y observacional de las supernovas de tipo Ia. ¿Podría desbancar la nueva supernova SN 2014J a la anterior? Dado el gran salto tecnológico y científico en los últimos 40 años, ¿qué sorpresas nos deparará el estudio detallado de una supernova de tipo Ia como esta? ¿Podremos mejorar el conocimiento actual de las supernovas de tipo Ia como indicadores de distancia y descubrir la naturaleza de la misteriosa energía oscura que acelera la expansión del Universo? La investigación acaba de empezar.
Se licenció en Física Teórica en la Universidad de Granada (2000) y es Doctor en Astrofísica en la Universidad de la Laguna y el Instituto de Astrofísica de Canarias (2006). Trabaja como astrofísico multifrecuencia en el Australian Astronomical Optics (AAO) y en el Departamento de Física y Astronomía de la Universidad de Macquarie (Sydney, Australia). Parte de su trabajo es dar soporte observacional en el Telescopio Anglo-Australiano, del que es responsable de uno de sus instrumentos científicos. Desde 2003 escribe en la bitácora astronómica «El Lobo Rayado», y en «Universo Rayado» dentro de Naukas desde 2015. Es vicepresidente de la Agrupación Astronómica de Córdoba (AAC), representante en la Red Andaluza de Astronomía (RAdA) y miembro de la Unión Astronómica Internacional (IAU), la Sociedad Española de Astronomía (SEA) y la Sociedad Australiana de Astronomía (ASA). Es el coordinador ProAm (relaciones entre astrofísicos profesionales y astrónomos aficionados) de la SEA.